

http://www.elsevier.com/locate/ejmech

EUROPEAN JOURNAL OF

MEDICINAL CHEMISTRY

European Journal of Medicinal Chemistry 43 (2008) 1349-1359

Original article

CODES, a novel procedure for ligand-based virtual screening: PDE7 inhibitors as an application example

Ana Castro ^{a,*,1}, María José Jerez ^a, Carmen Gil ^a, Félix Calderón ^{a,2}, Teresa Doménech ^b, Arsenio Nueda ^b, Ana Martínez ^{a,1}

^a Instituto de Química Médica (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain ^b Biology Department, Research Center, Almirall Prodesfarma, Laureà Miró 408-410, 08980 Sant Feliu de Llobregat, Barcelona, Spain

> Received 26 July 2007; received in revised form 18 October 2007; accepted 18 October 2007 Available online 21 December 2007

Abstract

Phosphodiesterase (PDE) 7 is a high affinity cAMP-specific PDE whose functional role in T-cells has been the subject of some controversy. Recent findings on tissue distribution, however, support the hypothesis that PDE7 could be a good target for the treatment of airway diseases, T-cell related diseases or central nervous system (CNS) disorders. Therefore, the identification of selective inhibitors targeted against PDE7 enzyme has become an attractive area of research. We report here the first use of the descriptors generated by the CODES program for ligand-based virtual screening. This program codifies molecules from a topological point of view and the generated descriptors are related to the chemical nature of the atoms, the atomic bonds and the connectivity with the rest of the molecule. They are also able to distinguish among stereoisomers. By using this approach, 173 compounds were codified, and their similarity with the reference compound was analysed. Based on the analysis, new potential PDE7 inhibitors have been identified, synthesized and biologically evaluated confirming that CODES descriptors are valid for ligand-based virtual screening and provided new lead compounds for further optimization as potent and selective PDE7 inhibitors.

© 2007 Elsevier Masson SAS. All rights reserved.

Keywords: PDE7; Virtual screening; CODES

1. Introduction

Phosphodiesterases (PDEs) comprise a large family of metallophosphohydrolases enzymes that metabolize the ubiquitous second messengers adenosine 3',5'-cyclic monophosphate (cAMP) and guanosine 3',5'-cyclic monophosphate (cGMP) to their respective inactive 5'-monophosphates [1]. cAMP and cGMP are generated through the action of adenylyl cyclase and guanylyl cyclase, respectively, and serve to transduce the action of many hormones, neurotransmitters, and other cellular effectors [2].

One mechanism by which cAMP/cGMP may be elevated within cells is by inhibition of cyclic nucleotide PDEs, which are the only way to degrade them [3]. Based on the fact that agents with the ability to elevate intracellular cAMP levels have been demonstrated to possess immunosuppressive and anti-inflammatory properties [4], the interest on the development of specific PDEs inhibitors and their role on immunomodulation processes have been renewed [5]. Thus, selective inhibitors of cAMP-specific PDEs have been suggested as therapies for the treatment of several human diseases [6], predominantly immunological disorders, such as multiple sclerosis [7], and inflammatory systems [8] and also disorders of the CNS such as depression, ischemia—reperfusion injury, and Alzheimer disease [9–12].

From the large phosphodiesterases family, PDEs isoenzymes 3B, 4A, 4B, 4D and 7A1 are predominant in immune cells [13–15]. To date, most of the research has been centered on PDE4 inhibitors because PDE4 represents a major

^{*} Corresponding author. Tel.: +34 918061130; fax: +34 918034660. E-mail address: acastro@neuropharma.es (A. Castro).

¹ Current address: NeuroPharma, S. A.; Avda. de la Industria 52, 28760 Tres Cantos, Madrid, Spain.

² Current address: Instituto de Química Orgánica General, Juan de la Cierva 3, 28006 Madrid, Spain.

isoenzyme in most T-cell preparations and their selective inhibitors are able to reduce inflammatory cytokines production [15,16]. However, a major drawback of these compounds has been the significant side effect of emesis [17]. To avoid these adverse effects several strategies have been considered to dissociate the beneficial and detrimental effects of PDE4 inhibitors with some degree of success and the second generation of PDE4 inhibitors has shown better pharmacokinetics profiles and less side effects [18–20].

An alternative approach is to target other cAMP-PDE families that are expressed in proinflammatory and immune cells. Initial evidence indicated that PDE7 had an important role in the activation of T-cells [21,22], however, results based on the use of PDE7A (-/-) knock out mice failed to confirm the role of PDE7A in T-cell proliferation and suggested that this phosphodiesterase could have some other role in the regulation of humoral immune responses [23]. Thus, the use of selective PDE7A inhibitors will be pivotal to elucidate the true potential of PDE7A as a pharmacological target in the context of the immune response [24]. Several years ago, our research group was the first one in reported the first PDE7 selective inhibitors [25]. Since then, a lot of efforts have been done to increase potency and selectivity of this kind of compounds [26], conforming a great variety of diverse chemical compounds with interesting pharmacological profiles [27].

The search for new lead compounds in the pharmaceutical industry increasingly makes use of virtual screening of databases for drug discovery. Among the available methods, similarity searching is a cheap and widely used method to distill a pool of potentially interesting compounds from a large database [28]. This method is based on the similarity principle, one of the crucial principles of the rational drug design, that states that structurally similar compounds are expected to have similar physicochemical and biological properties, and therefore, they could have similar in vivo effects. Thus, once an active molecule has been identified, the ligand virtual screening is based in the search in codified databases of similar structures regarding similarity or any other specific property. This has two main advantages: a high speed in comparison to the direct analysis of each molecule in a database, and the ability to find molecules that at a first glance do look similar but, however, they hide the same features that have defined the target molecule [29].

In the present study, we introduce CODES as a novel procedure for ligand-based virtual screening. This program, which generates topological descriptors based on calculations with neural networks (NN), has never been used for virtual screening purposes, although it has been widely used for QSAR studies, as for example the prediction of the nematocide action of pteridine derivatives [30], as well as new potassium channels openers [31]. In this way, it has also been used to carry out QSPR studies as the determination of pharmacokinetic properties as for example the oral absorption and BBB penetration of several drugs [32] and the mean life of antihistaminic drugs, classifying them in their corresponding therapeutic categories [33].

To evaluate the efficiency of such method, we conducted a virtual screening focused on the finding of new phosphodiesterase (PDE) 7 inhibitors. After the identification of lead compounds, we synthesized new derivatives based on the results of such screening and determined their inhibition on PDE7.

2. Materials and methods

Similarity searching begins with the identification of a known bioactive molecule, the target structure. The structure of this molecule is then compared with each of the structures in a database using an objective measure of similarity. The target molecule and the database may comprise 2D and 3D structures, which are characterized by one or more descriptors that describe some structural features of the molecules under scrutiny [28]. Later on a similarity coefficient is used to quantify the degree of resemblance between the target structure and each of the database structures. The database molecules are then ranked in decreasing order of the calculated similarity values, with the top-ranked molecules, being those that bear the closest structural similarity to the target structure [34].

The effectiveness of the search depends on both the representation and similarity coefficient used, which together comprise the overall similarity measure.

2.1. Selection of the target molecule and the database

In the search of new PDE7 inhibitors, we selected as target molecule the previously published 1-[(3,4-dichlorophenyl)-methyl]-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide (Fig. 1), because it was the first PDE7 inhibitor described with an IC₅₀ value of 8 μ M [25].

The database was created with a set of 173 structurally diverse molecules (1–173). This collection of compounds included 131 structurally diverse derivatives (1–131) selected because they have a biologically privileged scaffold that show different pharmacological and toxicological properties, but it was also enriched with 31 PDE7 inhibitors (132–162), including the target structure as 134, and 11 PDE4 inhibitors (163–173) using in different biological assays. (All these structures are included in Supplementary data.)

2.2. Codification of structures: CODES

Databases in which the virtual screening is carried out have their structures codified by descriptors, that is, indexes

Fig. 1. Target structure for the virtual screening of new PDE7 inhibitors.

calculated on the basis of one or several properties of those structures that possess essential information about the nature and/or structure of those molecules. Descriptors can be derived from 1-, 2- or 3-dimensional representations of the molecule [29].

In this work the structures have been codified using CODES program. These descriptors are related to the chemical nature of the atoms, the atomic bonds and the connectivity with the rest of the molecule. Moreover, apart of all the information of the chemical structure, they show two additional advantages over other topological descriptors: they are able to distinguish among stereoisomers and, at the same time, avoid all the problems associated with the 3D molecular conformation. As it is described in section theoretical basis of CODES of Supplementary data, the output of this program is a matrix in which each of the columns represents one of the atoms of the molecule.

2.3. Reduction of dimensions

In general, most similarity measures depend on dimensionality [35], mean that they can only compare two structures with the same dimensions, that is, with the same number of descriptors. In the case of CODES, the matrix depends on the number of atoms of the molecule. Therefore, once all the molecules have been codified, it is necessary to reduce the dimensions to homogenize them in all the data set, that is, to be able to compare all the molecules independently of their nature. A widely spread approach is to reduce the dimensionality of the original descriptors by means of principal component analysis (PCA), selecting only the few first most relevant principal components. Components of this new variable have to be a linear combination of the original descriptors and they must explain a proportion of the variance of the data big enough [36]. Therefore, it summarized all the available information with the minimum loss of explaining capacity with respect to the variance.

In the case of CODES' matrixes, the reduction of dimensions by PCA was done by Tsar (version 3.3. Oxford Molecular, Ltd.), finding that the two first components were able to explain 95% of the variance and 99% of the times. That is why we select these two variables to define each compound of the database.

2.4. Similarity criteria

For the final comparison of all the structures of the database a similarity criteria needs to be used. Among all the similarity measures between continuous topological descriptors, Tanimoto coefficient was selected in this work because it has been shown to be the most effective one in the identification of active compounds from a target molecule [34]. Anyway, this measure is monotonic with the Dice coefficient, is highly related with the Cosine coefficient, and for binary descriptors its complement is coincident with the Soergel coefficient. So, any of these measures provides a good indication of similarity [28].

3. Results and discussion

Results were ordered in a decreasing way depending on their similarity with the target molecule (Table 1). Results for those molecules whose coefficient was higher than the threshold of 0.9 and of 0.95 are shown in Fig. 2. We only select those molecules because the capacity to find new active compounds increases with the selected threshold [37]. As it can be observed, the only molecule with Tanimoto coefficient equal to 1 is **134**, because it was the target molecule.

From a first analysis of these structures it is possible to observe that only 11 out of 173 molecules (6.3%) have a Tanimoto coefficient higher than 0.95, and only 17 (9.8%) have it higher than 0.90. Therefore this can be considered as a selective and efficient method for virtual screening by similarity. Moreover molecules 136, 137, 135 and 132 belong to the benzothienothiadiazine family, which is structurally similar to the target molecule; 146 and 152 are PDE7 inhibitors, what indicate that this process retrieves potentially active molecules against a biological target; and finally the most interesting result falls on the structures 173, 164 and 163, because they are PDE4 inhibitors, enzyme with a high structural homology with PDE7.

On the basis of these results, we propose the synthesis not only of new thiadiazine derivatives analogues to the target molecule (174–180), but also quinazoline derivatives (181–196), structurally analogues to nitraquazone (173) (Scheme 1).

For the preparation of the newly designed benzothiadiazine derivatives, we alkylated the corresponding heterocycles according to previously described procedures [25,38]. On the other hand, the quinazoline derivatives proposed were prepared following the procedures previously described [39–46] by cyclocondesation of the corresponding functionalised heterocycles with isocyanates or isothiocyanates.

These novel sets of compounds were tested for their inhibitory potencies against human recombinant PDE7 expressed in *Saccharomyces cerevisiae* as described in Section 5. In this expression system the only cyclic nucleotide hydrolysing activity present in cell extracts corresponded to human PDE7. Isoenzyme selectivity was obtained by comparing the IC₅₀ values or % of inhibition of the compounds against PDE7 with their inhibitory activity against PDE4 and PDE3 (Table 2).

Some of the heterocyclic compounds evaluated exhibited PDE7 inhibitory properties (IC_{50} at μM level) validating the lead compounds identified by similarity virtual screening. From the biological results, preliminary structure-activity relationships have emerged. Regarding the heterocyclic system, the thioxoquinazoline ring appears more effective than the other condensed heterocycles (185, 193 and 195 versus 175 and 179). Moreover, derivatives with a non-substituted phenyl (183 and 192) or *ortho*-halogen are the most active ones of each series (185 and 187).

4. Conclusions

We have shown the utility of CODES neural networks molecular codification as a useful tool for ligand-based virtual screening of compounds within a wide range of chemical diverse structures and have been efficiently applied to identify new PDE7 inhibitors. A database of 173 no-congeneric compounds has been codified by descriptors generated by CODES program, the dimensionality of the original descriptors was done by PCA and Tanimoto coefficient was selected as similarity criteria. Final results of virtual screening provided new leads based on thiadiazine and quinazoline scaffolds. Several derivatives structurally related to these leads were synthesized and evaluated enzymatically. The biological data revealed that these novel compounds are equipotent to the target structure but with a simple chemical structure. For this reason, these new compounds may be considered as new prototypes for further optimization. CODES program has been validated for ligand-based virtual screening, proving to be a selective and efficient method for the selection of new PDE7 inhibitors.

Table 1 Virtual screening results ordered by the Tanimoto coefficient

5. Experimental

5.1. Chemistry

Melting points were determined with a Reichert–Jung Thermovar apparatus and are uncorrected. Flash column chromatography was carried out at medium pressure using silica gel (E. Merck, Grade 60, particle size 0.040–0.063 mm, 230–240 mesh ASTM) with the indicated solvent as eluent. ¹H NMR spectra were obtained on Varian XL-300 and Bruker WP-300 spectrometers working at 300 MHz. Typical spectral parameters were: spectral width 10 ppm, pulse width 9 μs (57°), data size 32 K. NOE difference spectra were measured under the same conditions, using a presaturation time of 3 s. ¹³C NMR experiments were carried out on Varian XL-300 and Bruker WP-300 spectrometers operating at 75 MHz. The

Entry	Compound	Tanimoto coefficient	Entry	Compound	Tanimoto coefficient	Entry	Compound	Tanimoto coefficient	Entry	Compound	Tanimoto coefficient
1	134	1	44	91	0.04707651	87	139	-0.33141429	131	82	-0.33281374
2	74	0.99760222	45	63	0.03985446	88	34	-0.33188710	132	93	-0.33282288
3	39	0.99686219	46	22	0.03355749	89	107	-0.33194858	133	8	-0.33283736
4	173	0.99518338	47	6	0.03342122	90	88	-0.33196216	134	86	-0.33284900
5	130	0.98935455	48	69	0.03325900	91	49	-0.33197592	135	117	-0.33285026
6	98	0.98190982	49	81	0.02953837	92	44	-0.33208948	136	92	-0.33285890
7	85	0.98030514	50	43	0.02821337	93	50	-0.33212217	137	168	-0.33286646
8	136	0.97672433	51	142	0.02419064	94	30	-0.33216254	138	115	-0.33286934
9	120	0.97370866	52	121	0.02066309	95	94	-0.33218093	139	106	-0.33288291
10	146	0.95967932	53	56	0.01809397	96	125	-0.33227110	140	13	-0.33289077
11	137	0.95421559	54	131	0.01642970	97	14	-0.33232989	141	35	-0.33289549
12	59	0.94632901	55	3	0.01586728	98	52	-0.33246317	142	47	-0.33290870
13	135	0.94273906	56	95	0.01488014	99	55	-0.33247253	143	18	-0.33292077
14	163	0.93849906	57	141	0.01329916	100	9	-0.33248705	144	57	-0.33293108
15	152	0.91761092	58	96	0.01130440	101	40	-0.33249802	145	118	-0.33293197
16	67	0.90380532	59	33	0.00802879	102	73	-0.33252201	146	36	-0.33293548
17	164	0.90319139	60	116	0.00758128	103	99	-0.33253986	147	58	-0.33293684
18	132	0.90238568	61	60	0.00667694	104	78	-0.33258125	148	166	-0.33295283
19	65	0.89445047	62	128	0.00588713	105	84	-0.33258309	149	101	-0.33296629
20	79	0.88085173	63	129	0.00539618	106	29	-0.33259591	150	53	-0.33298047
21	161	0.85530084	64	10	0.00470288	107	124	-0.33263054	151	87	-0.33298630
22	7	0.85049195	65	167	-0.00459139	108	162	-0.33263889	152	19	-0.33299286
23	31	0.85010393	66	71	-0.00871085	109	42	-0.33264401	153	38	-0.33299979
24	16	0.80705312	67	144	-0.01016302	110	145	-0.33265572	154	109	-0.33301542
25	150	0.80670073	68	154	-0.01708360	111	90	-0.33265593	155	37	-0.33302045
26	153	0.80465623	69	27	-0.02322586	112	122	-0.33267046	156	114	-0.33302122
27	51	0.79510746	70	76	-0.03710607	113	75	-0.33268213	157	105	-0.33302414
28	26	0.79455399	71	138	-0.04287797	114	111	-0.33269321	158	149	-0.33302877
29	160	0.79168535	72	104	-0.04553995	115	23	-0.33269378	159	2	-0.33305239
30	54	0.77674841	73	25	-0.05763491	116	62	-0.33269675	160	148	-0.33306977
31	64	0.75853641	74	17	-0.05789004	117	61	-0.33269874	161	21	-0.33308175
32	156	0.74918709	75	4	-0.06634058	118	65	-0.33269892	162	97	-0.33309358
33	171	0.74918663	76	110	-0.06888479	119	147	-0.33270931	163	140	-0.33310867
34	A28	0.69955841	77	170	-0.07006056	120	119	-0.33271742	164	127	-0.33312856
35	113	0.68273209	78	48	-0.07416544	121	80	-0.33272102	165	143	-0.33313077
36	158	0.65609348	79	162	-0.07856270	123	15	-0.33272778	166	89	-0.33313179
37	155	0.61968205	80	126	-0.08798144	124	11	-0.33273716	167	12	-0.33316889
38	157	0.54941936	81	159	-0.08915842	125	83	-0.33274624	168	102	-0.33317586
39	153	0.53978515	82	41	-0.09353445	126	169	-0.33278687	169	151	-0.33318839
40	100	0.27538400	83	108	-0.19490619	127	72	-0.33279869	170	70	-0.33327559
41	103	0.25228953	84	124	-0.19490769	128	32	-0.33280073	171	68	-0.33328733
42	45	0.18791646	85	46	-0.19872345	129	165	-0.33280428	172	20	-0.33330564
43	5	0.07573717	86	1	-0.32664176	130	24	-0.33280748	173	77	-0.33332744

Fig. 2. Structures with Tanimoto coefficient higher than 0.90 (in brackets) obtained virtual screening by similarity with CODES.

Table 2 Biological activity (PDE7A, PDE3A, and PDE4B inhibitions) of thiadiazine and quinazoline derivatives **174–196**^a

Compound	PDE3A (%)	PDE4B (%)	PDE7A (%)
174	0	0	12
175	14.1	12.2	4.1
176	0	1	0
177	82.5	7	26
178	0	3	16
179	30	13.2	3.6
180	12	26.2	25.1
181	59	1.7	8.4
182	4.4	4.4	0.2
183	3.3	21.7	5.5
184	1.7	6.3	2.4
185	6.5	37	5.5
186	2.5	13	48.5
187	2.7	56	1.9
188	8.8	16.4	5.4
189	1.9	5.9	2.1
190	20	12	7
191	30.5	8.5	25
192	8	10	24
193	5	10	41.5
194	7	8.5	11
195	15.5	20.5	66.5
196	4.5	11.5	10

^a The inhibitory potency of the synthesized compounds on the human PDE3A, PDE4B and PDE7A activities was tested as described in Section 5. Data are indicated as IC₅₀ (μ M) or percent inhibition at 10 μ M (n=2-3).

acquisition parameters were: spectral width 16 kHz, acquisition time 0.99 s, pulse width 9 μs (57°), data size 32 K. Chemical shifts are reported in δ values (ppm) relative to internal Me₄Si, and J values are reported in Hertz. Analytical HPLC was carried out on a Waters 6000 system using a symmetry C18 (5 mm, 100 Å). Isocratic conditions were used: mobile phase CH₃CN/H₂O (0.05% H₃PO₄ + 0.04% Et₃N); flow rate 1 mL/min; detection, UV (254 nm). Elemental analyses were performed by the analytical department at C.N.Q.O. (CSIC) and the results obtained were within $\pm 0.4\%$ of the theoretical values.

5.1.1. 1-[(2,5-Difluorophenyl)methyl]-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide (175)

To a solution of benzothiadiazine dioxide **174** [47] (0.210 g, 1 mmol) in aqueous saturated solution of sodium bicarbonate (20 mL), 2,5-difluorophenylmethyl bromide (0.310 g, 1.5 mmol) was added. The reaction mixture was refluxed for 3 h. After cooling to room temperature, the aqueous phase was washed with CH₂Cl₂ (1 × 10 mL). The aqueous phase was cooled at -4 °C and the product was isolated by filtration of aqueous phase. Purification: preparative thin layer chromatography, using CH₂Cl₂:MeOH (10:1) as eluent; yield 0.260 g (83%) as a white solid; mp 131–132 °C. Purity 86% (by HPLC); 1 H NMR (CD₃OD) δ 5.16 (s, 2H, N–CH2), 6.71 (dd, 1H, J_{H6H8} = 1.2 Hz, J_{H7H8} = 8.3 Hz, H-8), 6.89 (t, 1H, J_{H6H7} = 7.3 Hz, H-6), 7.19 (t, 1H, J_{H5H7} = 1.7 Hz, H-7), 7.06–7.99 (m, 3H, Ar–H), 7.90 (dd, 1H, J_{H5H6} = 7.8 Hz, H-5); 13 C NMR (CD₃OD) δ 42.0 (CH2), 113.4 (C-8), 119.1 (C-6),

119.4 (C-4a), 116.1, 117.2, 118.9, 134.2, 155.6, 157.3 (Ar–C), 128.7 (C-5), 132.1 (C-7), 142.1 (C-8a), 165.6 (C-4). Anal. $C_{14}H_{10}F_{2}N_{2}O_{3}S$ (C, H, N, S).

5.1.2. 1-(1-Naphtylmethyl)-thieno[3,2-c]-1,2,6-thiadiazin-4(3H)-one 2,2-dioxide (177)

To a solution of thienothiadiazine dioxide 176 [48] (0.200 g, 1 mmol) in aqueous saturated solution of sodium bicarbonate (20 mL), 1-chloromethylnaphtyl chloride (0.176 g, 1 mmol) was added. The reaction mixture was refluxed for 24 h. After cooling to room temperature, the aqueous phase was washed with CH₂Cl₂ (1 × 10 mL). The aqueous phase was cooled at -4 °C and the product was isolated by filtration of aqueous phase. Purification: preparative thin layer chromatography, using CH₂Cl₂:MeOH (10:1) as eluent; yield 0.070 g (21%) as a solid; mp > 350 °C. Purity 84% (by HPLC); 1 H NMR (CD₃OD) δ 4.98 (s, 2H, N-CH2), 6.70 (d, 1H, $J_{H6H7} = 5.3 \text{ Hz}, \text{ H-7}, 6.97 - 7.46 \text{ (m, 7H, Ar-H)}, 7.57 \text{ (d, }$ 1H, H-6); 13 C NMR (CD₃OD) δ 54.5 (N–CH2), 119.7 (C-7), 120.8 (C-4a), 124.5, 125.8, 126.9, 127.0, 127.4, 127.5, 127.9, 131.5, 133.5, 135.2 (Ar-C), 134.2 (C-6), 142.6 (C-7a), 157.7 (C-4). Anal. C₁₆H₁₂N₂O₃S₂ (C, H, N, S).

5.1.3. 1-[(2,5-Difluorophenyl)methyl]-benzo[4,5]thieno-[3,2-c]-1,2,6-thiadiazin-4(3H)-one 2,2-dioxide (**179**)

To a solution of benzothienothiadiazine dioxide 178 [25] (0.254 g, 1 mmol) in aqueous saturated solution of sodium bicarbonate (20 mL), 2,5-difluorophenylmethyl bromide (0.310 g, 1.5 mmol) was added. The reaction mixture was refluxed for 3 h. After cooling to room temperature, the aqueous phase was extracted with CH_2Cl_2 (4 × 10 mL). The organic phase was dried over sodium sulphate and the solvent evaporated under reduced pressure. The residue was chromatographed by preparative thin layer chromatography, using CH₂Cl₂:MeOH (8:1) as eluent; yield 0.040 g (10%) as a yellow solid; mp 224-226 °C. Purity 89% (by HPLC); ¹H NMR (CD₃OD) δ 4.07 (s, 2H, N–CH2), 6.39– 6.52 (m, 3H, Ar–H), 7.49 (t, 1H, $J_{H7H8} = 6.9$ Hz, H-7), 7.59 (t, 1H, $J_{H8H9} = 8.1$ Hz, H-8), 7.79 (d, 1H, H-9), 7.89 (d, 1H, $J_{H6H7} = 7.3 \text{ Hz}$, H-6); ¹³C NMR (CD₃OD) δ 58.0 (N-CH2), 100.5, 109.7, 110.2, 145.7, 163.5, 163.6 (Ar-C), 123.1 (C-9), 124.1 (C-6), 125.4 (C-4a), 125.9 (C-7), 128.7 (C-8), 131.6 (C-5a), 137.1 (C-9b), 140.3 (C-9a), 158.0 (C-4). Anal. C₁₇H₁₂F₂N₂S₂O₂ (C, H, N, S).

5.1.4. 1-[(3,4-Dichlorophenyl)methyl]-benzo[4,5]thieno-[3,2-c]-1,2,6-thiadiazin-4(3H)-one 2,2-dioxide (**180**)

To a solution of benzothienothiadiazine dioxide **178** [25] (0.254~g, 1~mmol) in aqueous saturated solution of sodium bicarbonate (20 mL), 3,4-dichlorophenylmethyl chloride (0.293 g, 1.5 mmol) was added. The reaction mixture was refluxed for 3 h. After cooling to room temperature, the aqueous phase was washed with CH_2Cl_2 (4 × 10 mL). The organic phase was dried over sodium sulphate and the solvent evaporated under reduced pressure. The residue was chromatographed by preparative thin layer chromatography, using CH_2Cl_2 : MeOH (8:1) as eluent; yield 0.060 g (15%) as a solid; mp

227–228 °C. Purity 91% (by HPLC); 1 H NMR (CD₃OD) δ 4.08 (s, 2H, N–CH2), 6.91–7.03 (m, 3H, Ar–H), 7.51 (t, 1H, $J_{\rm H7H8}$ = 6.9 Hz, H-7), 7.59 (t, 1H, $J_{\rm H8H9}$ = 8.1 Hz, H-8), 7.77 (d, 1H, H-9), 7.91 (d, 1H, $J_{\rm H6H7}$ = 7.3 Hz, H-6); 13 C NMR (CD₃OD) δ 57.9 (N–CH2), 101.3, 128.9, 130.1, 133.02, 134.1, 141.9 (Ar–C), 122.9 (C-9), 124.3 (C-6), 125.6 (C-4a), 125.8 (C-7), 129.0 (C-8), 131.4 (C-5a), 137.1 (C-9b), 140.3 (C-9a), 158.5 (C-4). Anal. $C_{16}H_{10}Cl_{2}N_{2}S_{2}O_{3}$ (C, H, N, S).

5.1.5. (1H)-Quinazolin-2,4-dione (181)

To a solution of potassium isocyanate (0.081 g, 1 mmol) in 1 mL of dry toluene, methyl anthranilate (0.151 g, 1 mmol) was added. The reaction mixture was stirred at room temperature and after 3 h extracted with CH₂Cl₂ (2 × 10 mL). The organic phase was washed with an aqueous saturated solution of sodium bicarbonate, dried over sodium sulphate, and cooled at -4 °C. After 24 h, the crude solid was filtered and redissolved in 1 mL of ethanol and 1 mL of 10% NaOH. The reaction was refluxed for 1 h. Acidification of the solution with concentrate hydrochloric acid yielded 0.060 g (40%) of **181** as a white solid; mp 298-305 °C (Ref. [39], 295-300 °C). Purity 98% (by HPLC); 1 H NMR (CD₃OD) δ 7.2– 7.6 (m, 2H, H-6, H-8), 7.59 (m, 1H, H-7), 7.83 (dd, 1H, $J_{\text{H5H6}} = 7.9 \text{ Hz}, \ J_{\text{H5H7}} = 1.1 \text{ Hz}, \ \text{H-5}; \ ^{13}\text{C} \text{ NMR (CD}_3\text{OD)}$ δ 114.5 (C-4a), 115.5 (C-8), 122.5 (C-6), 127.1 (C-5), 135.1 (C-7), 141.0 (C-8a), 150.4 (C-4), 163.0 (C-2). Anal. C₈H₆N₂O₂ (C, H, N).

5.1.6. 3-(4-Methoxyphenyl)-(1H)-quinazolin-2,4-dione (182)

To a solution of 4-methoxyphenylisocyanate (0.149 g, 1 mmol) in 1 mL of dry toluene, methyl anthranilate (0.151 g, 1 mmol) was added. The reaction mixture was refluxed and after 72 h extracted with CH_2Cl_2 (2 × 10 mL). The organic phase was washed with an aqueous saturated solution of sodium bicarbonate, dried over sodium sulphate, and cooled at -4 °C. After 24 h, the crude solid was filtered and redissolved in 1 mL of ethanol and 1 mL of 10% NaOH. The reaction was refluxed for 1 h. Acidification of the solution with concentrate hydrochloric acid yielded 0.110 g (43%) of **182** as a white solid; mp 297–299 °C (Ref., 299 °C). Purity 99% (by HPLC); ¹H NMR (CD₃OD) δ 3.43 (s, 3H, OCH3), 7.10-7.26 (m, 4H, Ar-H), 7.45 (m, 1H, H-6), 7.53 (dd, 1H, $J_{\text{H8H7}} = 7.9 \text{ Hz}, J_{\text{H8H6}} = 1.1 \text{ Hz}, \text{ H-8}, 7.85 \text{ (m, 1H, H-7)},$ 8.05 (dd, 1H, $J_{H5H6} = 7.9 \text{ Hz}$, $J_{H5H7} = 1.1 \text{ Hz}$, H-5); ¹³C NMR (CD₃OD) δ 58.9 (OCH₃), 116.3, 116.9, 123.8, 124.0, 125.2, 176.8 (Ar-C), 119.9 (C-4a), 120.7 (C-8), 128.0 (C-6), 133.1 (C-5), 140.7 (C-7), 145.3 (C-8a), 164.4 (C-4), 167.9 (C-2). Anal. C₁₅H₁₂N₂O₃ (C, H, N).

5.2. General procedure for the synthesis of thioxoquinazoline derivatives

To a solution of the corresponding isothiocyanate (1 mmol) in 1 mL of dry toluene, methyl anthranilate (0.151 g, 1 mmol) was added. The reaction mixture was refluxed under the

indicated conditions in each case. After that, the product was isolated by filtration.

5.2.1. 3-Phenyl-2-thioxo-(1H)-quinazolin-4-one (**183**)

Reagent: phenylisothiocyanate (0.135 g, 1 mmol). Condition: 24 h. Yield 0.090 g (35%) as a white solid; mp 300—302 °C (Ref. [49], 301 °C). Purity 99% (by HPLC); 1 H NMR (CD₃OD) δ 7.20—7.60 (m, 7H, Ar—H, H-6, H-8), 7.80 (m, 1H, H-7), 8.06 (dd, 1H, $J_{\rm H5H6}$ = 7.9 Hz, $J_{\rm H5H7}$ = 1.1 Hz, H-5); 13 C NMR (CD₃OD) δ 115.8 (C-4a), 116.3 (C-8), 124.5 (C-6), 127.5 (C-5), 128.2, 129.0, 129.1, 139.4 (Ar—C), 135.7 (C-7), 139.9 (C-8a), 159.9 (C-4), 176.2 (C-2). Anal. $C_{14}H_{10}N_{2}SO$ (C, H, N, S).

5.2.2. 3-(4-Methoxyphenyl)-2-thioxo-(1H)-quinazolin-4-one (184)

Reagent: 4-methoxyphenylisothiocyanate (0.165 g, 1 mmol). Condition: 72 h. Yield 0.070 g (24%) as a white solid; mp 274–276 °C (Ref. [43], 275 °C). Purity 99% (by HPLC); $^1\mathrm{H}$ NMR (CD₃OD) δ 3.76 (s, 3H, OCH₃), 6.83–7.59 (m, 6H, Ar–H, H-6, H-8), 7.77 (m, 1H, H-7), 7.93 (dd, 1H, J_{H5H6} = 7.9 Hz, J_{H5H7} = 1.4 Hz, H-5); $^{13}\mathrm{C}$ NMR (CD₃OD) δ 55.7 (OCH₃), 115.7 (C-4a), 115.2 (C-8), 116.5, 116.7, 130.0, 130.8, 139.3, 159.3 (Ar–C), 125.5 (C-6), 127.6 (C-5), 135.8 (C-7), 140.2 (C-8a), 159.7 (C-4), 175.8 (C-2). Anal. $\mathrm{C_{15}H_{12}N_2SO_2}$ (C, H, N, S).

5.2.3. 3-(2,6-Difluorophenyl)-2-thioxo-(1H)-quinazolin-4-one (185)

Reagent: 2,6-difluorophenylisothiocyanate (0.171 g, 1 mmol). Condition: 4 days. Yield 0.160 g (55%) as a white solid; mp 262–263 °C. Purity 99% (by HPLC); $^1\mathrm{H}$ NMR (CD₃OD) δ 7.30–7.66 (m, 5H, Ar–H, H-6, H-8), 7.85 (m, 1H, H-7), 8.01 (dd, 1H, $J_{\mathrm{H5H6}} = 7.7$ Hz, $J_{\mathrm{H5H7}} = 0.9$ Hz, H-5); $^{13}\mathrm{C}$ NMR (CD₃OD) δ 112.5, 112.7, 115.2, 131.8, 156.5, 159.0 (Ar–C), 115.5 (C-4a), 116.5 (C-8), 125.5 (C-6), 127.9 (C-5), 137.0 (C-7), 140.0 (C-8a), 159.8 (C-4), 175.0 (C-2). Anal. $C_{14}H_8F_2N_2\mathrm{SO}$ (C, H, N, S).

5.2.4. 3-(2,3,4-Trifluorophenyl)-2-thioxo-(1H)-quinazolin-4-one (186)

Reagent: 2,3,4-trifluorophenylisothiocyanate (0.189 g, 1 mmol). Condition: 14 days. Yield 0.200 g (67%) as a white solid; mp 260–261 °C. Purity 99% (by HPLC); 1 H NMR (CD₃OD) δ 7.37–7.56 (m, 4H, Ar–H, H-6, H-8), 7.83 (m, 1H, H-7), 7.99 (dd, 1H, $J_{\rm H5H6}$ = 7.2 Hz, $J_{\rm H5H7}$ = 0.9 Hz, H-5); 13 C NMR (CD₃OD) δ 113.0, 124.4, 126.5, 145.3, 148.9, 152.2 (Ar–C), 115.8 (C-4a), 116.3 (C-8), 125.2 (C-6), 127.8 (C-5), 136.5 (C-7), 139.9 (C-8a), 159.6 (C-4), 175.5 (C-2). Anal. $C_{14}H_{7}F_{3}N_{2}$ SO (C, H, N, S).

5.2.5. 3-(2-Bromophenyl)-2-thioxo-(1H)-quinazolin-4-one (187)

Reagents: 2-bromophenylisothiocyanate (0.214 g, 1 mmol). Conditions: 36 h. Yield 0.170 g (52%) as a white solid; mp 252–254 °C (Ref. [44], 256 °C). Purity 98% (by HPLC); 1 H NMR (CD₃OD) δ 7.20–7.80 (m, 7H, Ar–H, H-6, H-7, H-8),

7.79 (dd, 1H, $J_{\rm H5H6}$ = 7.9 Hz, $J_{\rm H5H7}$ = 1.1 Hz, H-5); ¹³C NMR (CD₃OD) δ 115.8 (C-4a), 116.0 (C-8), 122.5, 128.8, 130.4, 131.4, 132.9, 138.3 (Ar–C), 124.7 (C-6), 127.6 (C-5), 136.9 (C-7), 139.8 (C-8a), 159.1 (C-4), 175.2 (C-2). Anal. $C_{14}H_{9}BrN_{7}SO$ (C, H, N, S).

5.2.6. 3-Benzyl-2-thioxo-(1H)-quinazolin-4-one (188)

Reagent: benzylisothiocyanate (0.149 g, 1 mmol). Condition: 24 h. Yield 0.130 g (50%) as a yellow solid; mp 231–233 °C (Ref. [45], 231–233 °C). Purity 99% (by HPLC); $^1\mathrm{H}$ NMR (CD₃OD) δ 5.22 (s, 2H, CH2), 7.18–7.26 (m, 7H, Ar–H, H-6, H-8), 7.74 (m, 1H, H-7), 7.81 (dd, 1H, J_{H5H6} = 7.9 Hz, J_{H5H7} = 1.1 Hz, H-5); $^{13}\mathrm{C}$ NMR (CD₃OD) δ 50.4 (CH2), 116.3 (C-8), 116.6 (C-4a), 124.5 (C-6), 126.7, 127.7, 129.3, 140.8 (Ar–C), 127.9 (C-5), 135.8 (C-7), 140.6 (C-8a), 159.7 (C-4), 175.2 (C-2). Anal. $C_{15}\mathrm{H}_{12}\mathrm{N}_{2}\mathrm{SO}$ (C, H, N, S).

5.2.7. 3-(1-Naphtyl)-2-thioxo-(1H)-quinazolin-4-one (189)

Reagent: 1-naphtylisothiocyanate (0.185 g, 1 mmol). Condition: 7 days. Yield 0.050 g (18%) as a white solid; mp 226–228 °C (Ref. [42], 228 °C). Purity 99% (by HPLC); 1 H NMR (CD₃OD) δ 7.15–7.79 (m, 9H, Ar–H, H-6, H-8), 7.74 (m, 1H, H-7), 7.90 (dd, 1H, $J_{\rm H5H6}$ = 7.9 Hz, $J_{\rm H5H7}$ = 1.1 Hz, H-5); 13 C NMR (CD₃OD) δ 115.7 (C-4a), 115.9 (C-8), 124.1, 124.5, 124.9, 125.7, 125.8, 126.5, 126.6, 128.2, 134.6, 135.4, (Ar–C), 124.5 (C-6), 127.8 (C-5), 135.7 (C-7), 139.6 (C-8a), 159.7 (C-4), 175.7 (C-2). Anal. $C_{18}H_{12}N_{2}SO$ (C, H, N, S).

5.2.8. 3-Methyl-2-thioxo-(1H)-quinazolin-4-one (190)

Reagent: methylisothiocyanate (0.073 g, 1 mmol). Condition: 72 h. Yield 0.090 g (46%) as a yellow solid; mp 262–264 °C (Ref. [50], 259–260 °C). Purity 90% (by HPLC); 1 H NMR (CD₃OD) δ 3.45 (s, 3H, CH₃), 7.30–7.39 (m, 2H, H-6, H-8), 7.73 (m, 1H, H-7), 7.95 (dd, 1H, $J_{\text{H5H6}} = 8.0$ Hz, $J_{\text{H5H7}} = 0.7$ Hz, H-5); 13 C NMR (CD₃OD) δ 33.6 (CH₃), 115.6 (C-4a), 115.9 (C-8), 124.7 (C-6), 127.6 (C-5), 135.6 (C-7), 139.6 (C-8a), 159.9 (C-4), 175.7 (C-2). Anal. $C_{9}H_{8}N_{2}$ SO (C, H, N, S).

5.3. General procedure for the synthesis of thienopyrimidinone derivatives

To a solution of the corresponding isothiocyanate (1 mmol) in 1 mL of dry toluene, 3-amino-thiophene-2-carboxylic acid methyl ester [48] (0.157 g, 1 mmol) was added. The reaction mixture was refluxed under the indicated conditions in each case. After that, the product was isolated by filtration.

5.3.1. 3-Methyl-2-thioxo-(1H)-thieno[3,2-d]pyrimidin-4-one (191)

Reagent: methylisothiocyanate (0.073 g, 1 mmol). Condition: 5 days. Yield 0.040 g (21%) as a brown solid; mp 234–236 °C. Purity 99% (by HPLC); 1 H NMR (CD₃OD) δ 2.97 (s, 3H, CH₃), 7.01 (d, 1H, $J_{\rm H6H7}$ = 5.1 Hz, H-7), 8.15 (d, 1H, H-6); 13 C NMR (CD₃OD) δ 33.6 (CH₃), 145.3

(C-4a), 115.0 (C-7), 117.5 (C-6), 137.5 (C-7a), 156.8 (C-4), 175.6 (C-2). Anal. C₇H₆N₂SO₂ (C, H, N, S).

5.3.2. 3-Phenyl-2-thioxo-(1H)-thieno[3,2-d]pyrimidin-4-one (192)

Reagent: phenylisothiocyanate (0.135 g, 1 mmol). Condition: 5 days. Yield 0.030 g (13%) as a white solid; mp 265–267 °C. Purity 99% (by HPLC); 1 H NMR (CD₃OD) δ 7.07 (d, 1H, $J_{\rm H6H7} = 5.1$ Hz, H-7), 7.23–7.78 (m, 5H, Ar–H), 7.84 (d, 1H, H-6); 13 C NMR (CD₃OD) δ 115.7 (C-7), 117.7 (C-6), 126.0, 128.6, 129.3, 139.5 (Ar–C), 137.9 (C-7a), 145.6 (C-4a), 157.0 (C-4), 176.7 (C-2). Anal. $C_{12}H_8N_2SO_2$ (C, H, N, S).

5.3.3. 3-(2,6-Difluorophenyl)-2-thioxo-(1H)-thieno[3.2-d]pyrimidin-4-one (193)

Reagent: 2,6-difluorophenylisothiocyanate (0.171 g, 1 mmol). Condition: 17 days. Yield 0.005 g (2%) as a white solid; mp 270–272 °C. Purity 98% (by HPLC); 1 H NMR (CD₃OD) δ 7.11 (d, 1H, $J_{\rm H6H7}$ = 5.1 Hz, H-7), 7.21–8.30 (m, 3H, Ar–H), 7.84 (d, 1H, H-6); 13 C NMR (CD₃OD) δ 112.5, 112.7, 126.0, 159.9 (Ar–C), 114.4 (C-7), 117.9 (C-6), 139.5 (C-7a), 146.6 (C-4a), 156.6 (C-4), 175.5 (C-2). Anal. $C_{12}H_6F_2N_2SO_2$ (C, H, N, S).

5.4. General procedure for the synthesis of benzothienopyrimidinone derivatives

To a solution of the corresponding isothiocyanate (1 mmol) in 1 mL of dry toluene, 3-amino-benzo[b]thiophene-2-carboxylic acid methyl ester [51] (0.207 g, 1 mmol) was added. The reaction mixture was refluxed under the indicated conditions in each case. After that, the product was isolated by filtration.

5.4.1. 3-Phenyl-2-thioxo-(1H)-benzo[4,5]thieno[3,2-d]-pyrimidin-4-one (194)

Reagent: phenylisothiocyanate (0.135 g, 1 mmol). Condition: 5 days. Yield 0.040 g (14%) as a yellow solid; mp 255–256 °C. Purity 95% (by HPLC); ¹H NMR (CD₃OD) δ 7.24–7.47 (m, 5H, Ar–H), 7.56 (m, 1H, H-8), 7.64 (t, 1H, $J_{\rm H7H8}$ = 6.0 Hz, H-7), 8.10 (d, 1H, $J_{\rm H6H7}$ = 6.3 Hz, H-6), 8.60 (d, 1H, $J_{\rm H8H9}$ = 5.4 Hz, H-9); ¹³C NMR (CD₃OD) δ 114.5 (C-4a), 124.0 (C-9), 124.0 (C-6), 125.6 (C-8), 128.0, 129.0, 139.7 (Ar–C), 129.3 (C-7), 129.9 (C-9a), 140.5 (C-5a), 142.6 (C-9b), 157.7 (C-4), 177.0 (C-2). Anal. C₁₆H₁₀N₂S₂O (C, H, N, S).

5.4.2. 3-(2,6-Difluorophenyl-2-thioxo-(1H)-benzo[4,5]-thieno[3,2-d]-pyrimidin-4-one (195)

Reagent: 2,6-difluorophenylisothiocyanate (0.171 g, 1 mmol). Condition: 24 h. Yield 0.040 g (12%) as a yellow solid; mp 280–282 °C. Purity 99% (by HPLC); ¹H NMR (CD₃OD) δ 7.22–7.33 (m, 3H, Ar–H), 7.52–7.62 (m, 2H, H-7, H-8), 8.14 (d, 1H, $J_{\text{H6H7}} = 8.06$ Hz, H-6), 8.60 (d, 1H, H-9); ¹³C NMR (CD₃OD) δ 117.6, 130.8, 142.6, 160.3 (Ar–C), 123.1 (C-4a), 124.0 (C-6), 124.2 (C-9), 125.7 (C-8), 128.6 (C-9a), 129.7 (C-7), 140.9 (C-5a), 143.7 (C-9b), 156.4 (C-4), 175.9 (C-2). Anal. $C_{16}H_8F_2N_2S_2O$ (C, H, N, S).

5.4.3. 3-(2,3,4-Trifluorophenyl-2-thioxo-(1H)-benzo[4,5]thieno[3,2-d]-pyrimidin-4-one (196)

Reagent: 2,3,4-trifluorophenylisothiocyanate (0.189 g, 1 mmol). Condition: 17 days. Yield 0.030 g (9%) as a yellow solid; mp 268–269 °C. Purity 99% (by HPLC); ¹H NMR (CD₃OD) δ 7.15–7.38 (m, 2H, Ar–H), 7.49–7.65 (m, 2H, H-7, H-8), 8.14 (d, 1H, $J_{\text{H6H7}} = 8.02$ Hz, H-6), 8.60 (d, 1H, H-9); ¹³C NMR (CD₃OD) δ 115.3, 118.8, 130.1, 130.2, 131.4, 167.0 (Ar–C), 123.1 (C-4a), 124.2 (C-9), 124.3 (C-6), 125.5 (C-8), 128.7 (C-9a), 129.6 (C-7), 140.8 (C-5a), 143.8 (C-9b), 156.4 (C-4), 175.8 (C-2). Anal. $C_{16}H_7F_3N_2S_2O$ (C, H, N, S).

5.5. Measurement of PDE activities

PDE3A (purified from human platelets), PDE4B (human recombinant) and PDE7A (human recombinant) activities were monitored by measuring the hydrolysis of [3 H]-cAMP to [3 H]-AMP using a PDE—SPA kit (Amersham). Extracts containing the corresponding human phosphodiesterases were incubated in "low binding" plates (Costar 3604) for 60 min at room temperature. The assay mixture (80 μ L) contains 15 nM [3 H]-cAMP (1 μ Ci/mL) in the assay buffer (50 mM tris, pH 7.5, 8.3 mM MgCl2, 1.7 mM EGTA) and 10 μ L of test compound. These compounds were resuspended in DMSO (final DMSO concentration 5% (v/v)) and tested at different concentrations varying from 1 mM to 1 nM to calculate an IC50 and/or % activity inhibition. These dilutions were done in 96-well plates.

Hydrolysis of [³H]-cAMP was initiated by adding 10 μL of a solution containing the corresponding phosphodiesterase extract, and the plate was then incubated under agitation at room temperature. The reaction was stopped after 60 min (with 10–20% substrate conversion) by addition of 50 μL phosphodiesterase scintillation proximity assay (SPA) beads. All reactions were carried out in duplicate. After incubation the reaction was stopped with 50 μL (0.89 mg) of PDE SPA beads (Amersham Pharmacia Biotech), and the resulting mixture was allowed to settle for 20 min before counting in a microtitre plate counter.

Acknowledgment

The authors gratefully acknowledge the financial support of NeuroPharma S.A., CICYT (SAF2003/02262) and Fundación Médica Mutua Madrileña (MPY 1387/04) for this project.

Appendix. Supplementary data

Theoretical basis of CODES and structures of the database. Supplementary data associated with this article can be found in the online version, at doi:10.1016/j.ejmech.2007.10.027.

References

- [1] M. Conti, S.L. Jin, Prog. Nucleic Acid Res. Mol. Biol. 63 (1999) 1-38.
- [2] M. Vig, A. George, R. Sen, J. Durdik, S. Rath, V. Bal, Mol. Pharmacol. 62 (2002) 1471–1481.

- [3] W. Ritcher, Proteins 46 (2002) 278-286.
- [4] A.C. Allison, Immunopharmacology 47 (2000) 63-83.
- [5] D.M. Essavan, Biochem. Pharmacol. 57 (1999) 965-973.
- [6] C. Lugnier, Pharmacol. Ther. 109 (2006) 366-398.
- [7] H.J. Dyke, J.G. Montana, Exp. Opin. Invest. Drugs 11 (2002) 1-13.
- [8] D. Spina, Drugs 63 (2003) 2575-2594.
- [9] F.S. Menniti, W.S. Faraci, C.J. Schmidt, Nat. Rev. Drug Discov. 5 (2006) 660–670.
- [10] J.M. O'Donnell, H.T. Zhang, Trends Pharmacol. Sci. 25 (2004) 158– 163.
- [11] S. Birk, L. Edvinsson, J. Olesen, C. Kruuse, Eur. J. Pharmacol. 489 (2004) 93-100.
- [12] S. Pérez-Torres, R. Cortes, M. Tolnay, A. Probst, J.M. Palacios, G. Mengod, Exp. Neurol. 182 (2003) 322–334.
- [13] D. Ekholm, B. Hemmer, G. Gao, M. Vergelli, R. Martin, V. Manganiello, J. Immunol. 159 (1997) 1520—1529.
- [14] S. Erdogan, M.D. Houslay, Biochem. J. 321 (1997) 165-175.
- [15] M.A. Giembycz, C.J. Corrigan, J. Seybold, R. Newton, P.J. Barnes, Br. J. Pharmacol. 118 (1996) 1945—1958.
- [16] C.D. Manning, M. Burman, S.B. Christensen, L.B. Cieslinski, D.M. Essayan, M. Grous, T.J. Torphy, M.S. Barnette, Br. J. Pharmacol. 128 (1999) 1393–1398.
- [17] D.M. Essayan, A. Kagey-Sobotka, L.M. Lichtenstein, S.K. Huang, J. Pharmacol. Exp. Ther. 282 (1997) 505-512.
- [18] M.D. Houslay, P. Schafer, K.Y.J. Zhang, Drug Discov. Today 10 (2005) 1503—1519.
- [19] K.F. Chung, Eur. J. Pharmacol. 533 (2006) 110-117.
- [20] M. Giembycz, Curr. Opin. Pharmacol. 5 (2005) 238-244.
- [21] L. Li, C. Yee, J.A. Beavo, Science 283 (1999) 848-851.
- [22] A. Nakata, K. Ogawa, T. Sasaki, N. Koyama, K. Wada, J. Kotera, H. Kikkawa, K. Omori, O. Kaminuma, Clin. Exp. Immunol. 128 (2002) 460–466.
- [23] G. Yang, K.W. McIntyre, R.M. Townsend, H.H. Shen, W.J. Pitts, J.H. Dodd, S.G. Nadler, M. McKinnon, A.J. Watson, J. Immunol. 171 (2003) 6414–6420.
- [24] S.J. Smith, L.B. Cieslinski, R. Newton, L.E. Donnelly, P.S. Fenwick, A.G. Nicholson, P.J. Barnes, M.S. Barnette, M.A. Giembycz, Mol. Pharmacol. 66 (2004) 1679—1689.
- [25] A. Martínez, A. Castro, C. Gil, M. Miralpeix, V. Segarra, T. Doménech, J. Beleta, J.M. Palacios, H. Ryder, X. Miró, C. Bonet, J.M. Casacuberta, F. Azorín, B. Piña, P. Puigdoménech, J. Med. Chem. 43 (2000) 683–689.
- [26] A. Castro, M.I. Abasolo, C. Gil, V. Segarra, A. Martínez, Eur. J. Med. Chem. 36 (2001) 333–338.
- [27] A. Castro, M.J. Jerez, C. Gil, A. Martínez, Med. Res. Rev. 25 (2005) 229–244
- [28] M. Whittle, V.J. Gillet, P. Willett, J. Chem. Inf. Comput. Sci. 44 (2004) 1840—1848.
- [29] F. Barbosa, H. Dragos, Curr. Top. Med. Chem. 4 (2004) 589-600.
- [30] C. Ochoa, J. Rodríguez, M. Rodríguez, A. Chana, M. Stud, P. Alonso-Villalobos, M.M. Martínez-Grueiro, Med. Chem. Res. 7 (1998) 530–545.
- [31] A. Martínez, A. Castro, M. Stud, J. Rodríguez, I. Cardelús, J. Llenas, A. Fernández, J.M. Palacios, Med. Chem. Res. 8 (1999) 171–180.
- [32] I. Dorronsoro, A. Chana, M.I. Abasolo, A. Castro, C. Gil, M. Stud, A. Martínez, Quant. Struct. -Act. Relat. 23 (2004) 89—98.
- [33] C. Quiñones, J. Cáceres, M. Stud, A. Martínez, Quant. Struct. -Act. Relat. 19 (2000) 448–454.
- [34] P. Willett, J. Chem. Inf. Comput. Sci. 38 (1998) 983-996.
- [35] A. Bender, H.Y. Mussa, G.S. Gill, R.C. Glen, J. Med. Chem. 47 (2004) 6569–6583.
- [36] H. Xu, D.K. Agafiotis, Curr. Top. Med. Chem. 2 (2002) 1305-1320.
- [37] T. Pöter, H. Matter, J. Med. Chem. 41 (1998) 478-488.
- [38] A. Martínez, C. Gil, A. Castro, A.M. Bruno, C. Pérez, C. Prieto, J. Otero, Antiviral Chem. Chemother. 14 (2003) 107–114.
- [39] Y.-Q. Wu, D.C. Limburg, D.E. Wilkinson, G.S. Hamilton, J. Heterocycl. Chem. 40 (2003) 191–193.
- [40] J. Garin, E. Meléndez, F.L. Merchán, T. Tejero, E. Villarroya, Synthesis 5 (1983) 406–408.

- $[41]\ \ H.Y.P.\ Choo,\ M.\ Kim,\ S.K.\ Lee,\ Bioorg.\ Med.\ Chem.\ 10\ (2002)\ 517-523.$
- [42] N.B. Das, A.S. Mittra, J. Indian Chem. Soc. 56 (1979) 398-400.
- [43] P.N. Bhargava, P. Ram, Bull. Chem. Soc. Jpn. 38 (1965) 342-344.
- [44] S. Muthusamy, V.T. Ramakrishnan, Synth. Commun. 22 (1992) 519–533.
- [45] R.M. Shafik, A.A.B. Hazzaa, N.S. Habib, Pharmazie 34 (1979) 148–150.
- [46] D.H.R. Barton, D. Crich, G. Kretzschmar, J. Chem. Soc., Perkin Trans. 1 (1986) 39-53.
- [47] E. Cohen, B. Klarberg, J. Am. Chem. Soc. 84 (1962) 1994-2002.
- [48] A. Martínez, A.I. Esteban, A. Castro, C. Gil, G. Andrei, R. Snoeck, J. Balzarini, E. De Clerq, Antiviral Chem. Chemother. 11 (2000) 221– 230
- [49] D.H. Raheja, U.P. Fulwadhva, N.B. Laxmeshwar, J. Indian Chem. Soc. 61 (1984) 584-585.
- [50] J.P. Ferris, S. Singh, T.A. Newton, J. Org. Chem. 44 (1979) 173-178.
- [51] R.B. Beck, J. Org. Chem. 37 (1972) 3224-3226.